
CH -7 RESPONSE HEADERS

.

SETTING RESPONSE HEADERS FROM

SERVLET

 setHeader(String Name, String Value)

 This method sets the response header with the

designated name to the given value.

 There are two specialized methods to set headers

that contain dates and integers

 1) setDateHeader

 2)setIntHeader

 setDateHeader(String header, long

milliseconds)

 This method saves you the trouble of translating a

Java date in milliseconds since 1970 (as returned by

System.currentTimeMillis, Date.getTime, or

Calendar.getTimeInMillis) into a GMT time string.

 setIntHeader(String header, int

headerValue)

 This method spares you the minor inconvenience of

converting an int to a String before inserting it into a

header.

 HTTP allows multiple occurrences of the same

header name, and you sometimes want to add a new

header rather than replace any existing header with

the same name.

 The methods setHeader, setDateHeader, and

setIntHeader replace any existing headers of the

same name.

 whereas addHeader, addDateHeader, and

addIntHeader add a header regardless of whether a

header of that name already exists.

 Finally, HttpServletResponse also supplies a
number of convenience methods for specifying
common headers.

 setContentType(String mimeType)
 This method sets the Content-Type header and is used by the

majority of servlets.

 response.setContentType("type/subtype");

 i.e

 response.setContentType("image/jpeg");

 response.setContentType(“text/html");

 setContentLength(int length)

 This method sets the Content-Length header, which is useful if
the browser supports persistent (keep-alive) HTTP connections.

 addCookie(Cookie c)
 This method inserts a cookie into the Set-Cookie header. There

is no corresponding setCookie method, since it is normal to
have multiple Set-Cookie lines.

 sendRedirect(String address)

 the sendRedirect method sets the Location header as

well as setting the status code to 302.

 response.sendRedirect(“http://localhost:8080/demo");

 Response.sendRedirect(“http://www.microsoft.com”);

HTTP 1.1 RESPONSE HEADERS

AND THEIR MEANING

 Allow

 Cache-control

 Connection

 Content-Encoding

 Content-Language

 Content-Length

 Content-Type

 Expires

 Last-Modified

 Location

 Pragma

 Refresh

 Retry-After

 Set-Cookie

 WWW-Authenticate

 Allow :

 The Allow header specifies the request methods (GET,

POST, etc.) that the server supports. It is required for 405

(Method Not Allowed) responses.

 Connection :

 A value of close for this response header instructs the

browser not to use persistent HTTP connections.

Technically, persistent connections are the default when

the client supports HTTP 1.1 and does not specify a

“Connection: close” request header.

 Content-Encoding

 This header indicates the way in which the page was

encoded during transmission.

 Content-Language

 The Content-Language header signifies the language in which

the document is written

 Content-Length

 This header indicates the number of bytes in the response.
This information is needed only if the browser is using a
persistent (keep-alive) HTTP connection.

 Content-Type

 The Content-Type header gives the MIME (Multipurpose Internet
Mail Extension) type of the response document.

 Last-Modified

 This very useful header indicates when the document was
last changed.

 The client can then cache the document and supply a date by
an If-Modified-Since request header in later requests.

 Location

 This header, which should be included with all responses
that have a status code in the 300s, notifies the browser of
the document address.

 The browser automatically reconnects to this location and
retrieves the new document.

 This header is usually set indirectly, along with a 302 status
code, by the sendRedirect method of HttpServletResponse.

 Pragma

 Supplying this header with a value of no-cache instructs

HTTP 1.0 clients not to cache the document.

 However, support for this header was inconsistent with

HTTP 1.0 browsers.

 In HTTP 1.1, “Cache-Control: no-cache” is a more reliable

replacement.

 Retry-After

 This header can be used in conjunction with a 503 (Service

Unavailable) response to tell the client how soon it can repeat

its request.

 Set-Cookie
 The Set-Cookie header specifies a cookie associated with the page.

 Each cookie requires a separate Set-Cookie header.

 Servlets should not use response.setHeader("Set-Cookie", ...), but

instead should use the special-purpose addCookie method of

HttpServletResponse.

 WWW-Authenticate

 This header is always included with a 401
(Unauthorized) status code.

 It tells the browser what authorization type and
realm the client should supply in its Authorization
header.

 Frequently, servlets let password-protected Web
pages be handled by the Web server’s specialized
mechanisms (e.g., .htaccess) rather than handling
them directly.

 Cache-Control

 This useful header tells the browser or other client
the circumstances in which the response document
can safely be cached. It has the following possible
values.

 public : Document is cacheable, even if normal rules
(e.g., for password-protected pages) indicate that it
shouldn't be.
 response.setHeader("Cache-Control", " public ");

 private. Document is for a single user and can only
be stored in private (nonshared) caches.

 response.setHeader("Cache-Control", " private");

 no-store. Document should never be cached and
should not even be stored in a temporary location
on disk. This header is intended to prevent
inadvertent copies of sensitive information.

 response.setHeader("Cache-Control", " no-store");

 max-age=xxx : Document should be considered
stale after xxx seconds. This is a convenient
alternative to the Expires header but only works
with HTTP 1.1 clients. If both max-age and Expires
are present in the response, the max-age value
takes precedence.

 s-max-age=xxx : Shared caches should consider

the document stale after xxx seconds.

 The Cache-Control header is new in HTTP 1.1.

 Refresh

 This header indicates how soon (in seconds) the browser

should ask for an updated page.

 Note that Refresh does not stipulate continual updates; it

just specifies when the next update should be. So, you have

to continue to supply Refresh in all subsequent responses.

This header is extremely useful because it lets servlets

return partial results quickly while still letting the client

see the complete results at a later time.

 response.setIntHeader("Refresh", 30);

 Instead of having the browser just reload the current page,

you can specify the page to load. You do this by supplying a

semicolon and a URL after the refresh time. For example, to

tell the browser to go to http://host/path after 5 seconds

 response.setHeader("Refresh", "5; URL=http://host/path/");

 Example: Refresh.java

 Expires

 This header stipulates the time at which the content

should be considered out-of-date and thus no longer be

cached.

 A servlet might use this header for a document that

changes relatively frequently, to prevent the browser

from displaying a stale cached value.

 an Expires header with a date in the past is often used to

prevent browser caching.

 long currentTime = System.currentTimeMillis();

 long tenMinutes = 10*60*1000; // In milliseconds
response.setDateHeader("Expires", currentTime + tenMinutes);

7.5 USING SERVLETS TO GENERATE JPEG

IMAGES

 Although servlets often generate HTML output, they

certainly don't always do so.

 First, let us summarize the two main steps servlets

have to perform to build multimedia content.

1. Inform the browser of the content type they are

sending. To accomplish this task, servlets set the

Content-Type response header by using the

setContentType method of HttpServletResponse.

2. Send the output in the appropriate format. This

format varies among document types, of course, but in

most cases you send binary data, not strings as you do

with HTML documents. Consequently, servlets will

usually get the raw output stream by using the

getOutputStream method, rather than getting a

PrintWriter by using getWriter.

1. CREATE A BUFFEREDIMAGE.

 You create a java.awt.image.BufferedImage

object.

 BufferedImage(int width,int height,int type)

 i.e.

BufferedImage image = new BufferedImage(width, height,

BufferedImage.TYPE_INT_RGB);

2. DRAW INTO THE BUFFEREDIMAGE.

 You accomplish this task by calling the image's

getGraphics method, casting the resultant

Graphics object to Graphics2D, then making use

of Java 2D's rich set of drawing operations,

coordinate transformations, font settings, and fill

patterns to perform the drawing.

 Graphics2D g2d = (Graphics2D)image.getGraphics();

 i.e.

 G2d.drawLine();

 G2d.background();

3. SET THE CONTENT-TYPE RESPONSE

HEADER.

 As already discussed, you use the

setContentType method of HttpServletResponse

for this task.

 The MIME type for JPEG images is image/jpeg.

Thus, the code is as follows.

 response.setContentType("image/jpeg");

4. GET AN OUTPUT STREAM.

 As discussed previously, if you are sending binary

data, you should call the getOutputStream method of

HttpServletResponse rather than the getWriter

method.

 For instance:

 OutputStream out = response.getOutputStream();

5. SEND THE BUFFEREDIMAGE IN JPEG

FORMAT TO THE OUTPUT STREAM.

 When you use the ImageIO class, you just pass a

BufferedImage, an image format type ("jpg",

"png", etc.) and either an OutputStream or a File

to the write method of ImageIO.

 Except for catching the required IOException.

try

{

ImageIO.write(image, "jpg", out);

}

catch(IOException e)

{ System.out.println(e.getMessage());

}

Example : ImageDevelop.java

SUMMARY

 void setContentType(String mimeType)

 void setContentLength(int length)

 void addCookie(Cookie c)

 void sendRedirect(String address) throws
IOException

 void setHeader(String Name, String Value)

 PrintWriter getWriter()

 OutputStream getOutputStream()

OTHER METHODS of HttpServletResponse

 void setStatus(int sc)

 String encodeURL(String url)

