

 Session simply means a particular interval of
time.

 Session Tracking is a way to maintain state of
an user.

 Http protocol is stateless protocol.

 Each time user request to the server,server
treats the request as the new request.

 So we need to maintain the state of an user to
recognize to particular user.

 There are four typical solutions to this
problem:

 1) Cookies

 2) URL rewriting

 3)Hidden Form Fields.

 4)Servlets provide an outstanding session-
tracking solution: the HttpSession API.

 Advantage :

 1. Simplest technique of maintaining the state

 2. Cookies are maintained at client side.

 Disadvantage:

 1. It will not work if cookie is disabled from the
browser.

 2.Only textual information can be set in
cookie object.

 In case of Hidden form field an invisible
textfield is used for maintaining the state of
an user.

 In such case, we store the information in the
hidden field and get it from another servlet.

 This approach is better if we have to submit
form in all the pages and we don’t want to
depend on the browser.

 <INPUT TYPE=”hidden” NAME=”technology”
VALUE=”servlet”>

 Advantage:

 It will always work whether cookie is
disabled or not.

 Disadvantage:

 It is maintained at server side

 Extra form submission is required on
each pages.

 Only textual information can be used.

 In URL rewriting, we append a token or
identifier to the URL of the next Servlet or
the next resource.

 We can send parameter name/value pairs
using the following format:

 url?name1=value1&name2=value2&??
 Original

URL: http://server:port/servlet/ServletName
Rewritten
URL: http://server:port/servlet/ServletName
?sessionid=7456

http://server:port/servlet/ServletName
http://server:port/servlet/ServletName?sessionid=7456
http://server:port/servlet/ServletName?sessionid=7456
http://server:port/servlet/ServletName?sessionid=7456

 Advantage :

 1.It will always work whether cookie is
disabled or not(browser independent).

 2.Extra form submission is not required
on each pages.

 Disadvantage:

 1.It will work only with links.

 It can send only textual information.

 In such case, container creates a session id for
each user.

 The container uses this id to identify the
particular user.

 An object of HttpSession can be used to
perform two tasks:

 1. bind objects

 2. view and manipulate information about a
session, such as the session identifier,
creation time and last access time.

Web

browser 1

Web server

request request

Servlet

id1

response

put id1

response

Create Session

id1

Web

browser 2

Web

server

request request

Servlet

id1

response

put id2

response

Create Session

id2id2

Web server

request

Servlet

id1

response response

request

id1

id2

Session

read/write

Web

browser 1

id1

Web

server

request

Servlet

id1

response response

request

id2

id2

Session

read/write

Web

browser 2

id2

sessionId list

 The HttpServletRequest interface provides two
methods to get the object of HttpSession :

 1) HttpSession getSession() : returns the current
session associated with this request,or if the
request does not have a session, creates one.

 2) HttpSession getSession(boolean create)
: Return the current HttpSession associated with
this request or,if there is no current session and
create is true, returns a new session

 Object getAttribute(String name)
retrieves a previously stored value from a session,
returns null if no value found.

 Enumeration getAttributeNames()

– Returns names of all attributes in the session.

 void setAttribute(String name, Object value)

– Stores a value in a session.

 void removeAttribute(String name)

– Removes values associated with name.

 void invalidate()

– Expires the session and unbinds all objects with it.

 void logout()
– This method logs the client out of the Web server

and invalidates all sessions associated with that
client.

 String getId()
– returns the unique identifier generated for each

session.

 boolean isNew()
– This method returns true if the client (browser) has

never seen the session, usually because the session
was just created rather than being referenced by an
incoming client request.

– It returns false for preexisting sessions.

 long getCreationTime()
 returns the time in milliseconds since midnight,

January 1, 1970 (GMT(Greenwich Mean Time)) at which
the session was first built.

 long getLastAccessedTime()
– returns the time in milliseconds at which the session

was last accessed by the client.

 int getMaxInactiveInterval()
 void setMaxInactiveInterval(int seconds):

– These methods get or set the length of time, in
seconds, that a session should go without access
before being automatically invalidated.

– A negative value specifies that the session should
never time out.

 Example :ShowSession.java

 SessionServlet.java

 OrderForm.html, ShowItems.java

