
Prepared By : Vaishali Bharvada



 Major security concerns

 Declarative vs. programmatic security

 Using form-based authentication

 – Steps

 – Example

 Using BASIC authentication

 – Steps

 – Example



 Preventing unauthorized users from 
accessing sensitive data.

 – Access restriction

 • Identifying which resources need protection

 • Identifying who should have access to them

 – Authentication

 • Identifying users to determine if they are 
one of the authorized ones

 • Preventing attackers from stealing network

 data while it is in transit.

 – Encryption (usually with SSL)



 None of the individual servlets or JSP pages need any security-aware 
code.

 – Instead, both of the major security aspects are handled by the 
server.

 • To prevent unauthorized access
 – Use the Web application deployment descriptor (web.xml) to 

declare that certain URLs need protection.
 – Designate authentication method that server uses to identify users.
 – At request time, the server automatically prompts users for
 usernames and passwords when they try to access restricted
 resources, automatically checks the results against a server-specific
 set of usernames and passwords, and automatically keeps track of
 which users have previously been authenticated. This process is
 completely transparent to the servlets and JSP pages.
 • To safeguard network data
 – Use the deployment descriptor to stipulate that certain URLs should
 be accessible only with SSL. If users try to use a regular HTTP
 connection to access one of these URLs, the server automatically
 redirects them to the HTTPS (SSL) equivalent. 



 Protected servlets and JSP pages at least partially 
manage their own security.

 – Much more work, but totally portable.
 • No server-specific piece. Also no web.xml entries 

needed and a bit more flexibility is possible.
 To prevent unauthorized access
 – Each servlet or JSP page must either authenticate 

the user or verify that the user has been 
authenticated previously.

 To safeguard network data
 – Each servlet or JSP page has to check the network
 protocol used to access it.
 – If users try to use a regular HTTP connection to 

access one of these URLs, the servlet or JSP page 
must manually redirect them to the HTTPS (SSL) 
equivalent.



 When a not-yet-authenticated user tries to access a 
protected resource:

 – Server automatically redirects user to Web page with an
 HTML form that asks for username and password
 – Username and password checked against database of
 usernames, passwords, and roles (user categories)
 – If login successful and role matches, page shown
 – If login unsuccesful, error page shown
 – If login successful but role does not match, 403 error
 given (but you can use error-page and error-code)
 When an already authenticated user tries to
 access a protected resource:
 – If role matches, page shown
 – If role does not match, 403 error given
 – Session tracking used to tell if user already 

authenticated



 When a not-yet-authenticated user tries to

 access a protected resource:

 – Server sends a 401 status code to browser

 – Browser pops up dialog box asking for username and

 password, and they are sent with request in Authorization

 request header

 – Username and password checked against database of

 usernames, passwords, and roles (user categories)

 – If login successful and role matches, page shown

 – If login unsuccesful or role does not match, 401 again

 • When an already authenticated user tries to

 access a protected resource:

 – If role matches, page shown

 – If role does not match, 401 error given

 – Request header used to tell if user already authenticated



 1) Set up usernames, passwords, and roles.
 – Designate a list of users and associated passwords and
 abstract role(s) such as normal user or administrator.
 – This is a completely server-specific process.
 – Simplest Tomcat approach: use
 install_dir/conf/tomcat-users.xml:

 <tomcat-users>
 <user username="abc" password="abc”roles="registered-user" 

/>
 <user username="admin" 

password="admin"roles="administrator" />
 <user username="vmb" 

password="vmb"roles="administrator,registered-user" />
 <role rolename="manager-gui"/><user username="tomcat" 

password="tomcat" roles="manager-gui"/>
 </tomcat-users>



 2) Tell server that you are using form-based
authentication. Designate locations of login
and login-failure page.
 – Use the web.xml login-config element with 

authmethod of FORM and form-login-config with
 locations of pages.
 <web-app> …
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/login-error.html</form-

error-page>
 </form-login-config>
 </login-config>
 …</web-app>



 3) Create a login page (HTML or JSP)

 – HTML form with ACTION of j_security_check,

 METHOD of POST, textfield named j_username, and

 password field named j_password.

 <FORM ACTION="j_security_check" 
METHOD="POST">

 …

 <INPUT TYPE="TEXT" NAME="j_username">

 …

 <INPUT TYPE="PASSWORD" NAME="j_password">

 …

 </FORM>

 – For the username, you can use a list box, combo 
box, or set of radio buttons instead of a textfield.



 4) Create page for failed login attempts.

 – No specific content is mandated.

 – Perhaps just “username and password not 
found” and give a link back to the login page.

 – This can be either an HTML or a JSP document.



 5) Specify URLs to be password protected.
 – Use security-constraint element of web.xml. Two
 subelements: the first (web-resource-collection)
 designates URLs to which access should be restricted; the second
 (auth-constraint) specifies abstract roles that should have
 access to the given URLs. Using auth-constraint with no
 role-name means no direct access is allowed.
 <web-app ...>…
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Sensitive</web-resource-name>
 <url-pattern>/sensitive/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>administrator</role-name>
 <role-name>executive</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>...</login-config>…
 </web-app>



 6) List all possible abstract roles (categories

 of users) that will be granted access to any
 resource

 – Many servers do not enforce this, but technically 
required

 <web-app ...>

 ...

 <security-role>

 <role-name>administrator</role-name>

 </security-role>

 <security-role>

 <role-name>executive</role-name>

 </security-role>

 </web-app>



 7) Specify which URLs require SSL.
 – If server supports SSL, you can stipulate that 

certain resources are available only through 
encrypted HTTPS (SSL) connections. 

 Use the user-data-constraint subelement of 
security-constraint. Only full J2EE servers are 
required to support SSL.

 <security-constraint>

 …

 <user-data-constraint>

 <transport-guarantee>

 CONFIDENTIAL

 </transport-guarantee>

 </user-data-constraint>

 </security-constraint>



 8) Turn off the invoker servlet.

 – You protect certain URLs that are associated with

registered servlet or JSP names. 

 The http://host/prefix/servlet/Name format of 
default servlet URLs will probably not match the 
pattern. Thus, the security restrictions are bypassed 
when the default URLs are used.

 – Disabling it

 • In each Web application, redirect requests to other 
servlet by normal web.xml method

 <url-pattern>/servlet/*</url-pattern>

 • Globally

 – Server-specific mechanism (e.g. 
install_dir/conf/server.xml for Tomcat).



 Example: Access Rules

 Student Page

 – Anyone

 Faculty page

 –Faculty

 – Administrators

 Admin page

 –administrator



 Example: Access Rules

 Home page

 – Anyone

 Investing page

 – Registered users

 – Administrators

 Stock purchase page

 – Registered users

 – Via SSL only

 Delete account page

 – Administrators



 Advantages of form-based
 – Consistent look and feel
 – Fits model users expect from ecommerce sites
 Disadvantage of form-based
 – Can fail if server is using URL rewriting for 

session tracking. Can fail if browser has cookies 
disabled.

 Advantages of BASIC
 – Doesn't rely on session tracking
 – Easier when you are doing it yourself 

(programmatic)
 Disadvantage of BASIC
 – Small popup dialog box seems less familiar to 

most users
 Other auth-method options
 – CLIENT-CERT (X 509 certificates)
 – DIGEST (Not widely supported by browsers)



 1. Set up usernames, passwords, and roles.
 – Same as for form-based authentication. 

Server-specific.
 2. Tell the server that you are using BASIC
 authentication. Designate the realm name.
 – Use the web.xml login-config element with an
 auth-method subelement of BASIC and a 

realmname subelement (generally used as part 
of the title of the dialog box that the browser 
opens).

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Some Name</realm-name>
 </login-config>



 3. Specify which URLs should be password

 protected.

 – Same as with form-based authentication.

 4. List all possible roles (categories of users)

 that will access any protected resource

 – Same as with form-based authentication

 5. Specify which URLs should be available

 only with SSL.

 – Same as with form-based authentication.

 6. Turn off the invoker servlet.

 – Same as with form-based authentication.



 Example: Access Rules

 Student Page

 – Anyone

 Faculty page

 –Faculty

 – Administrators

 Admin page

 –administrator



 Home page

 – Anyone

 Financial plan

 – Employees or executives

 Business plan

 – Executives only



 Main security issues

 – Preventing access by unauthorized users

 – Preventing attackers from stealing network data

 Declarative security

 – Much less work than programmatic security

 – Requires server-specific password setup
◦ Form-based authentication

 – Attempts to access restricted resources get 
redirected to login page. HTML form gathers 
username and password.

 Session tracking tracks authenticated users.
◦ BASIC authentication

 – Attempts to access restricted resources results in 
dialog box. Dialog gathers username and 
password. HTTP headers track authenticated users.



THANK YOU 


