
Prepared By : Vaishali Bharvada



 Major security concerns

 Declarative vs. programmatic security

 Using form-based authentication

 – Steps

 – Example

 Using BASIC authentication

 – Steps

 – Example



 Preventing unauthorized users from 
accessing sensitive data.

 – Access restriction

 • Identifying which resources need protection

 • Identifying who should have access to them

 – Authentication

 • Identifying users to determine if they are 
one of the authorized ones

 • Preventing attackers from stealing network

 data while it is in transit.

 – Encryption (usually with SSL)



 None of the individual servlets or JSP pages need any security-aware 
code.

 – Instead, both of the major security aspects are handled by the 
server.

 • To prevent unauthorized access
 – Use the Web application deployment descriptor (web.xml) to 

declare that certain URLs need protection.
 – Designate authentication method that server uses to identify users.
 – At request time, the server automatically prompts users for
 usernames and passwords when they try to access restricted
 resources, automatically checks the results against a server-specific
 set of usernames and passwords, and automatically keeps track of
 which users have previously been authenticated. This process is
 completely transparent to the servlets and JSP pages.
 • To safeguard network data
 – Use the deployment descriptor to stipulate that certain URLs should
 be accessible only with SSL. If users try to use a regular HTTP
 connection to access one of these URLs, the server automatically
 redirects them to the HTTPS (SSL) equivalent. 



 Protected servlets and JSP pages at least partially 
manage their own security.

 – Much more work, but totally portable.
 • No server-specific piece. Also no web.xml entries 

needed and a bit more flexibility is possible.
 To prevent unauthorized access
 – Each servlet or JSP page must either authenticate 

the user or verify that the user has been 
authenticated previously.

 To safeguard network data
 – Each servlet or JSP page has to check the network
 protocol used to access it.
 – If users try to use a regular HTTP connection to 

access one of these URLs, the servlet or JSP page 
must manually redirect them to the HTTPS (SSL) 
equivalent.



 When a not-yet-authenticated user tries to access a 
protected resource:

 – Server automatically redirects user to Web page with an
 HTML form that asks for username and password
 – Username and password checked against database of
 usernames, passwords, and roles (user categories)
 – If login successful and role matches, page shown
 – If login unsuccesful, error page shown
 – If login successful but role does not match, 403 error
 given (but you can use error-page and error-code)
 When an already authenticated user tries to
 access a protected resource:
 – If role matches, page shown
 – If role does not match, 403 error given
 – Session tracking used to tell if user already 

authenticated



 When a not-yet-authenticated user tries to

 access a protected resource:

 – Server sends a 401 status code to browser

 – Browser pops up dialog box asking for username and

 password, and they are sent with request in Authorization

 request header

 – Username and password checked against database of

 usernames, passwords, and roles (user categories)

 – If login successful and role matches, page shown

 – If login unsuccesful or role does not match, 401 again

 • When an already authenticated user tries to

 access a protected resource:

 – If role matches, page shown

 – If role does not match, 401 error given

 – Request header used to tell if user already authenticated



 1) Set up usernames, passwords, and roles.
 – Designate a list of users and associated passwords and
 abstract role(s) such as normal user or administrator.
 – This is a completely server-specific process.
 – Simplest Tomcat approach: use
 install_dir/conf/tomcat-users.xml:

 <tomcat-users>
 <user username="abc" password="abc”roles="registered-user" 

/>
 <user username="admin" 

password="admin"roles="administrator" />
 <user username="vmb" 

password="vmb"roles="administrator,registered-user" />
 <role rolename="manager-gui"/><user username="tomcat" 

password="tomcat" roles="manager-gui"/>
 </tomcat-users>



 2) Tell server that you are using form-based
authentication. Designate locations of login
and login-failure page.
 – Use the web.xml login-config element with 

authmethod of FORM and form-login-config with
 locations of pages.
 <web-app> …
 <login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.jsp</form-login-page>
 <form-error-page>/login-error.html</form-

error-page>
 </form-login-config>
 </login-config>
 …</web-app>



 3) Create a login page (HTML or JSP)

 – HTML form with ACTION of j_security_check,

 METHOD of POST, textfield named j_username, and

 password field named j_password.

 <FORM ACTION="j_security_check" 
METHOD="POST">

 …

 <INPUT TYPE="TEXT" NAME="j_username">

 …

 <INPUT TYPE="PASSWORD" NAME="j_password">

 …

 </FORM>

 – For the username, you can use a list box, combo 
box, or set of radio buttons instead of a textfield.



 4) Create page for failed login attempts.

 – No specific content is mandated.

 – Perhaps just “username and password not 
found” and give a link back to the login page.

 – This can be either an HTML or a JSP document.



 5) Specify URLs to be password protected.
 – Use security-constraint element of web.xml. Two
 subelements: the first (web-resource-collection)
 designates URLs to which access should be restricted; the second
 (auth-constraint) specifies abstract roles that should have
 access to the given URLs. Using auth-constraint with no
 role-name means no direct access is allowed.
 <web-app ...>…
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Sensitive</web-resource-name>
 <url-pattern>/sensitive/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>administrator</role-name>
 <role-name>executive</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>...</login-config>…
 </web-app>



 6) List all possible abstract roles (categories

 of users) that will be granted access to any
 resource

 – Many servers do not enforce this, but technically 
required

 <web-app ...>

 ...

 <security-role>

 <role-name>administrator</role-name>

 </security-role>

 <security-role>

 <role-name>executive</role-name>

 </security-role>

 </web-app>



 7) Specify which URLs require SSL.
 – If server supports SSL, you can stipulate that 

certain resources are available only through 
encrypted HTTPS (SSL) connections. 

 Use the user-data-constraint subelement of 
security-constraint. Only full J2EE servers are 
required to support SSL.

 <security-constraint>

 …

 <user-data-constraint>

 <transport-guarantee>

 CONFIDENTIAL

 </transport-guarantee>

 </user-data-constraint>

 </security-constraint>



 8) Turn off the invoker servlet.

 – You protect certain URLs that are associated with

registered servlet or JSP names. 

 The http://host/prefix/servlet/Name format of 
default servlet URLs will probably not match the 
pattern. Thus, the security restrictions are bypassed 
when the default URLs are used.

 – Disabling it

 • In each Web application, redirect requests to other 
servlet by normal web.xml method

 <url-pattern>/servlet/*</url-pattern>

 • Globally

 – Server-specific mechanism (e.g. 
install_dir/conf/server.xml for Tomcat).



 Example: Access Rules

 Student Page

 – Anyone

 Faculty page

 –Faculty

 – Administrators

 Admin page

 –administrator



 Example: Access Rules

 Home page

 – Anyone

 Investing page

 – Registered users

 – Administrators

 Stock purchase page

 – Registered users

 – Via SSL only

 Delete account page

 – Administrators



 Advantages of form-based
 – Consistent look and feel
 – Fits model users expect from ecommerce sites
 Disadvantage of form-based
 – Can fail if server is using URL rewriting for 

session tracking. Can fail if browser has cookies 
disabled.

 Advantages of BASIC
 – Doesn't rely on session tracking
 – Easier when you are doing it yourself 

(programmatic)
 Disadvantage of BASIC
 – Small popup dialog box seems less familiar to 

most users
 Other auth-method options
 – CLIENT-CERT (X 509 certificates)
 – DIGEST (Not widely supported by browsers)



 1. Set up usernames, passwords, and roles.
 – Same as for form-based authentication. 

Server-specific.
 2. Tell the server that you are using BASIC
 authentication. Designate the realm name.
 – Use the web.xml login-config element with an
 auth-method subelement of BASIC and a 

realmname subelement (generally used as part 
of the title of the dialog box that the browser 
opens).

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Some Name</realm-name>
 </login-config>



 3. Specify which URLs should be password

 protected.

 – Same as with form-based authentication.

 4. List all possible roles (categories of users)

 that will access any protected resource

 – Same as with form-based authentication

 5. Specify which URLs should be available

 only with SSL.

 – Same as with form-based authentication.

 6. Turn off the invoker servlet.

 – Same as with form-based authentication.



 Example: Access Rules

 Student Page

 – Anyone

 Faculty page

 –Faculty

 – Administrators

 Admin page

 –administrator



 Home page

 – Anyone

 Financial plan

 – Employees or executives

 Business plan

 – Executives only



 Main security issues

 – Preventing access by unauthorized users

 – Preventing attackers from stealing network data

 Declarative security

 – Much less work than programmatic security

 – Requires server-specific password setup
◦ Form-based authentication

 – Attempts to access restricted resources get 
redirected to login page. HTML form gathers 
username and password.

 Session tracking tracks authenticated users.
◦ BASIC authentication

 – Attempts to access restricted resources results in 
dialog box. Dialog gathers username and 
password. HTTP headers track authenticated users.



THANK YOU 


