
Lets Start With 
JDBC……………



JDBC| Query To Database

Create Statement Object

Create Object of Statement Interface OR

Create Object of PreparedStatement Interface OR

Create Object of CallableStatement Interface 

Execute the Query

Using Methods of  CallableStatement Interface

Query database (Select or insert/update/delete)



JDBC| Query To Database using CallableStatement 

Create object of CallableStatement Interface 

DriverManager Class

Connection Interface

Creates Connection 
object using 

getConnection( )

CallableStatement Interface

Creates CallableStatement 
object using 
prepareCall( )



JDBC| Steps for CallableStatement

The basic steps are: 

Step 1: Connection.prepareCall method to create a CallableStatement object. 

Step 2: CallableStatement.setXXX methods to pass values to the input (IN)  parameters. 

Step 3: The CallableStatement.registerOutParameter method to indicate which parameters 

are output-only (OUT) parameters or input and output (INOUT) parameters. 

Step 4: One of the following methods to call the stored procedure: 

CallableStatement.executeUpdate: Invoke this method if the stored procedure 

does not return result sets. 

CallableStatement.executeQuery: Invoke this method if the stored procedure 

returns one result set. 

CallableStatement.execute: Invoke this method if the stored procedure 

returns multiple result sets. 

Step 5: If the stored procedure returns result sets, retrieve the result sets. Invoke the 

CallableStatement.getXXX methods to retrieve values from the OUT parameters or 

INOUT parameters. 

Step 6: The CallableStatement.close method to close the CallableStatement object 

when you have finished using that object.



JDBC| Query To Database using CallableStatement 

Create a procedure

Example :
Create or replace procedure remove (name varchar2) as  
Begin 

Delete from emp where emp.Empname=name;
End;



JDBC| Query To Database using CallableStatement 

Create a object using prepareCall Method of Connection 

Interface

Syntax :

Public CallableStatement prepareCall(String sql) throws 
SQLException

Example :

CallableStatement cst;

cst = con.prepareCall(“{call remove( ? )}” );



JDBC| Query To Database using CallableStatement 

Merge all values in SQL query where ? is given

To merge value of ? we have to use setXXX methods of CallableStatement. Syntax of 
setXXX methods:

setXXX(parameterIndex,parameterValue)

Example :
CallableStatement cst;
cst = con.prepareCall(“{call remove( ? )}” );
cst.setString(1, “Dhruvi”);



JDBC| Query To Database using CallableStatement 

Execute Query using method of CallableStatement

Following are 3 different execute methods available in CallableStatement 
Interface:

1. executeQuery( ):
public  ResultSet executeQuery( ) throws SQLException

Used with select query
2. executeUpdate( ):

public int executeUpdate( ) throws SQLException
Used with insert, update, delete, alter table etc.

3. execute( ):
public boolean  execute( ) throws SQLException
Generally used with multiple results are generated. 
Also used with Create table query.

Example :
CallableStatement cst;
cst = con.prepareCall(“{call remove( ? )}” );
cst.setString(1, “Dhruvi”);
cst.executeUpdate( );



JDBC| Query To Database using CallableStatement 

Define the call to the Database procedure

Procedure with no parameters.
{ call procedure_name } 

Procedure with input parameters.
{ call procedure_name(?, ?, ...) } 

Procedure with an output parameter.
{ ?= call procedure_name } 

Procedure with input and output parameters.
{ ? = call procedure_name(?, ?, ...) } 



Define the call to the Database procedure

Procedure with no parameters.
{ call procedure_name } 

Procedure with input parameters.
{ call procedure_name(?, ?, ...) } 

Procedure with an output parameter.
{ ?= call procedure_name } 

Procedure with input and output parameters.
{ ? = call procedure_name(?, ?, ...) } 



Using Database Transactions

When a database is updated, by default the changes 
are permanently written (or committed) to the 
database. 
However, this default behavior can be 
programmatically turned off. 
If autocommitting is turned off and a problem 
occurs with the updates, then each change to the 
database can be backed out (or rolled back to the 
original values). 
If the updates execute successfully, then the 
changes can later be permanently committed to the 
database. This approach is known as transaction 
management.



Using Database Transactions

The default for a database connection is autocommit; that is, 
each executed statement is automatically committed to the 
database.
 Thus, for transaction management you first need to turn off 
autocommit for the connection by calling 
setAutoCommit(false).
Typically, you use a try/catch/finally block to properly handle 
the transaction management. 
First, you should record the autocommit status. 
Then, in the try block, you should call setAutoCommit(false) 
and execute a set of queries or updates.
 If a failure occurs, you call rollback in the catch block; if the 
transactions are successful, you call commit at the end of the 
try block.
Either way, you reset the autocommit status in the finally 
block.



Using Database Transactions

The default for a database connection is autocommit; that is, 
each executed statement is automatically committed to the 
database.
Thus, for transaction management you first need to turn off 
autocommit for the connection by calling 
setAutoCommit(false).
Typically, you use a try/catch/finally block to properly handle 
the transaction management. 
First, you should record the autocommit status. 
Then, in the try block, you should call setAutoCommit(false) 
and execute a set of queries or updates.
If a failure occurs, you call rollback in the catch block; if the 
transactions are successful, you call commit at the end of the 
try block.
Either way, you reset the autocommit status in the finally block.



THANK YOU


