
Controlling Web Application

Behavior with web.xml

Prepared By :Vaishali Bharvada

Purpose of the Deployment Descriptor

 The deployment descriptor, web.xml, is used to control
many facets of a Web application.

 Using web.xml, you can assign custom URLs for invoking
servlets, specify initialization parameters for the entire
application as well as for specific servlets, control
session timeouts, declare filters, declare security roles,
restrict access to Web resources based on declared
security roles, and so on.

 The deployment descriptor is not part of the Java
compilation process. Therefore, changes in web.xml
don’t force you to recompile your code.

 In addition, the separation between the configuration
mechanism, web.xml, and the Java code allows for the
division between the development and deployment
roles within the development process.

Elements of Web.xml file

 icon

 display-name

 description

 distributable

 context-param

 filter

 filter-mapping

 listener

 servlet

 servlet-mapping

Continue…….
 session-config

 mime-mapping

 welcome-file-list

 error-page

 taglib

 resource-env-ref

 resource-ref

 security-constraint

 login-config

 security-role

 env-entry

 ejb-ref

 ejb-local-ref

Assigning Names and Custom

URLs
 Assigning Names :

 You assign a name by means of the servlet
element.

 <servlet>

 <servlet-name>Test</servlet-name>

 <servlet-class>

 coreservlets.TestServlet

 </servlet-class>

 </servlet>

Continue…

 This means that the servlet at WEB-

INF/classes/coreservlets/TestServlet is

now known by the registered name Test.

 Giving a servlet a name has the following

major implications:

 Initialization parameters, custom URL

patterns, and other customizations refer

to the servlet by the registered name, not

by the class name.

Defining Custom URLs

 To assign a custom URL, you use the
servlet-mapping element along with its
servlet-name and url-pattern subelements.

 The value of url-pattern must begin with
either / or *..

 Exact-Match Patterns:

 <servlet-mapping>

 <servlet-name>Test</servlet-name>

 <url-pattern>/UrlTest</url-pattern>

 </servlet-mapping>

Continue….
 Multimapping Patterns :

 By giving a url-pattern of

/directoryName/*, you can specify that all

URLs of the form

http://host/webAppPrefix/directoryName/

blah are handled by the designated servlet.

 By giving a url-pattern of *.jsp, you can

specify that all URLs of the form

http://host/webAppPrefix/.../blah.jsp are

handled by the designated servlet.

Matching Overlapping Patterns

 When mapping a servlet to a URL, the
specification does not allow the same value
of url-pattern to appear twice within the
same web.xml file.

 Thus, there can never be an overlap
between two patterns that map exact
matches.

 However, if one or more servlet mappings
use “*”, an overlap could occur.

 Compliant servers are required to use the
following rules to resolve these overlaps.

Continue………….

 Exact matches are handled first.

 Thus, if /Servlet/DS and /Servlet/* were both url-pattern entries,

the first would take precedence for a request URL of

http://host/webAppPrefix/Servlet/DS.

 Directory mappings are preferred over extension

mappings.

 Thus, if /servlet/* and *.html were both url-pattern entries, the

first would take precedence for a request URL of http://host/

webAppPrefix/servlet/first.html.

 For overlapping directory mappings, the longest path is

preferred.

 Thus, if /Servlet/DS/* and /servlet/* were both url-pattern

entries, the first would take precedence for a request URL of

http://host/webAppPrefix/Servlet/DS/first.html.

Naming JSP Pages

 Because JSP pages get translated into servlets, it is
natural to expect that you can name JSP pages just
as you can name servlets.

 After all, JSP pages might benefit from
initialization parameters, security settings, or
custom URLs, just as regular servlets do.

 it is true that JSP pages are really servlets behind
the scenes.

 You don’t know the actual class name of JSP pages
(because the system picks the name). So, to name
JSP pages, you substitute the jsp-file element for
the servlet-class element, as follows:

Continue…….

 <servlet>

 <servlet-name>PageName

 </servlet-name>

 <jsp-file>

 /WEB-INF/jspPages/TestPage.jsp

 </jsp-file>

 </servlet>

Disabling the Invoker Servlet
 One reason for setting up a custom URL for a servlet or

JSP page is so that you can register initialization
parameters to be read from the init (servlets) or jspInit
(JSP pages) methods.

 However, the initialization parameters are available only
when the servlet or JSP page is accessed by means of a
custom URL pattern, not when it is accessed with the
default URL of
http://host/webAppPrefix/servlet/package.Servlet-Class.

 Consequently, you might want to turn off the default URL
so that nobody accidentally calls the uninitialized servlet.

 This process is sometimes known as disabling the invoker
servlet, because most servers have a standard servlet that
is registered with the default servlet URLs and simply
invokes the real servlet.

Initializing and Preloading

Servlets and JSP Pages
 Assigning Servlet Initialization

Parameters :

 There are a few common things that are
keeping in mind when dealing with
initialization parameters:

 Return values.

 The return value of getInitParameter is
always a String. So, for integer parameters
you might use Integer.parseInt to obtain
an int.

Continue………..
 Nonexistent values.

 If the key passed into the getInitParameter

method does not appear inside the servlet’s init-
param declarations, null will be returned.

 Initialization in JSP.

 JSP pages use jspInit, not init. JSP pages

also require use of the jsp-file element in place of
servlet-class.

 Default URLs.

 Initialization parameters are only available when

servlets are accessed through custom URL patterns
associated with their registered names.

Assigning JSP Initialization

Parameters

 (1) You use jsp-file instead of servlet-class

<servlet>

<servlet-name>InitPage</servlet-name>

<jsp-file>/InitPage.jsp</jsp-file>

<init-param>

<param-name>...</param-name>

<param-value>...</param-value>

</init-param>

</servlet>

 (2) You should assign the original URL of
the JSP page as its custom URL pattern.

Continue…
 <servlet-mapping>

 <servlet-name>InitPage</servlet-name>

 <url-pattern>/InitPage.jsp</url-

pattern>

 </servlet-mapping>

 (3)The JSP page uses jspInit, not init.

 public void jspInit()

 { }

 Example :

http://localhost:9000/chtwo/InitPage

http://localhost:9000/chtwo/InitPage

Supplying Application-Wide

Initialization Parameters
 In some situations you want to supply

system-wide initialization parameters that
can be read by any servlet or JSP page by
means of the getInitParameter method of
ServletContext.

 You use the context-param element to
declare these system-wide initialization
values.

 The context-param element should contain
param-name,param-value, and, optionally,
description subelements, as shown here.

Continue..
 <context-param>

 <param-name>name</param-name>

 <param-value>abc</param-value>

 </context-param>

 Example: MyServlet.java

 http://localhost:9000/chtwo/index.html

http://localhost:9000/chtwo/index.html

Loading Servlets When the

Server Starts
 we use load-on-startup to guarantee that the

LoadInit Servlet’s init method is run when the
Web application is first loaded
<servlet>

<servlet-name>LoadInit</servlet-name>

<servlet-class>coreservlets.LoadInitServlet

</servlet-class>

<init-param>

<param-name>companyName</param-name>

<param-value>Atmiya Infotech</param-value>

</init-param>

<load-on-startup>0</load-on-startup>

</servlet>

Continue….
 The integer 0 in the load-on-startup’s

element body tells the server that this

servlet should be loaded into memory at

server startup before any other servlet or

JSP page.

Declaring Filters

 <filter>

 <filter-name>Reporter</filter-name>

 <filter-class>coreservlets.ReportFilter</filter-class>

 </filter>

 <filter-mapping>

 <filter-name>Reporter</filter-name>

 <servlet-name>SomeServletName</servlet-name>

 </filter-mapping>

 <filter-mapping>

 <filter-name>Reporter</filter-name>

 <url-pattern>/*</url-pattern>

 </filter-mapping>

Specifying Welcome Pages

 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 <welcome-file>index.html</welcome-

file>

 </welcome-file-list>

Designating Pages to Handle

Errors
 <error-page>

 <error-code>404</error-code>

 <location>/NotFound.jsp</location>

 </error-page>

 <error-page>

 <exception-type>

 package.ClassName

 </exception-type>

 <location>/SomeURL</location>

 </error-page>

Example

 <error-page>
<exception-type>

 java.lang.Exception

 </exception-type>
<location>/error.jsp</location>
</error-page>

 <error-page>
<exception-type>

 java.lang.Throwable

 </exception-type>
<location>/OtherErrors.jsp</location>
</error-page>

http://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

Controlling Session Timeouts

 <session-config>

 <session-timeout>180</session-timeout>

 </session-config>

 the value of the session-timeout sub

element is specified in minutes.

Documenting Web Applications

 A number of the web.xml elements are

designed not for the server, but for the

visual development environment.

 These include icon, display-name, and

description.

icon
 The icon element specifies the location within

the Web Application for a small and large
image used to represent the Web Application
in a GUI tool.

 <icon>

 <small-icon>/small-book.gif</small-icon>

 <large-icon>/tome.jpg</large-icon>

 </icon>

 A 16 × 16 GIF or JPEG image can be specified
with the small-icon element,

 and a 32 × 32 image can be specified with
large-icon.

display-name

 The display-name element provides a name

that the GUI tools might use to label this

particular Web application.

 Here is an example:

 <display-name>Rare Books</display-name>

description

 The description element provides

explanatory text, as shown here:

 <description>

 This Web application represents the store

developed for rare-books.com, an online

bookstore specializing in rare and limited-

edition books.

 </description>

Associating Files with

MIME Types
 Servers typically have a way for

Webmasters to associate file extensions
with media types. So, for example, a file
named mom.jpg would automatically be
given a MIME type of image/jpeg.

 <mime-mapping>

 <extension>.jpg</extension>

 <mime-type>image/jpeg</mime-type>

 </mime-mapping>

Continue….
 perhaps your Web application wants to

override standard mappings.

 For instance, the following would tell the
server to designate .ps files as plain text
(text/plain) rather than as PostScript
application/postscript) when sending them
to clients.

 <mime-mapping>

 <extension>ps</extension>

 <mime-type>text/plain</mime-type>

 </mime-mapping>

Configuring JSP Pages

 The jsp-config element is used to provide

configuration information for the JSP pages

in a Web application.

 It has two subelements, taglib and jsp-

property-group.

 Both subelements can appear zero or more

times under the jsp-config element, but any

of the taglib subelements must appear

before any of the jsp-property-group

subelements.

Locating Tag Library Descriptors

 <jsp-config>

 <taglib>

 <taglib-uri>/charts</taglib-uri>

 <taglib-location>

 /WEB-INF/charttags.tld

 </taglib-location>

 </taglib>

 </jsp-config>

 USE :

 <% taglib uri="/charts" prefix="somePrefix"
%>

Configuring JSP Page Properties

 JSP page properties are configured using one
or more jsp-property-group elements.

 (1) url-pattern:

 The url-pattern element contains the mapping
used to match URLs to JSP pages.

 <jsp-config>

 <jsp-property-group>

 <url-pattern>/WEB-INF/myjsps/*</url-
pattern>

 <!-- ... -->

 </jsp-property-group>

 </jsp-config>

Continue..

 (2)el-ignored

 The el-ignored element can be set to either
true or false (e.g.,<el-ignored>true</el-
ignored>).

 When set to true, the affected pages turn
off JSP Expression Language (EL) processing
and treat JSP EL as regular text.

Continue…

 (3) scripting-invalid:

 The scripting-invalid element can be set to
either true or false.

 e.g.,

 <scripting-invalid>true</scripting-invalid>.

 When set to true, the server will produce a
translation time error if any JSP page in this
property group uses scripting declarations,
scriptlets, or scripting expressions.

Continue…

 (4) is-xml

 The is-xml element can be set to either true
or false.

 e.g.,

 <is-xml> true</is-xml>

 If set to true, this tells the server that the
group of resources that match the URL
pattern of this property group are to be
treated as JSP Documents.

 A JSP Document is a JSP page that contains
only valid XML code.

Continue…

 (5) include-prelude

 The include-prelude element contains a
context-relative path that must correspond
to a resource in the Web application.

 When the resource is present, the given
path will be automatically included, using
the static include directive, at the beginning
of each JSP page in the jsp-property-group.

 This capability can be useful if you want to
provide a standard header in multiple
pages of your application.

Continue…

 (6) include-coda

 The include-coda element contains a
context-relative path that must correspond
to a resource in the Web application.

 When the resource is present, the given
path will be automatically included, using
the static include directive,at the end of
each JSP page in this jsp-property-group.

 Similar to the include-prelude element, this
can be useful if you want to provide a
standard footer across multiple pages in
your application.

Example :
 <jsp-config>

 <jsp-property-group>

 <url-pattern>/WEB-INF/jspPages/ustm/*

 </url-pattern>

 <el-ignored>true</el-ignored>

 <include-prelude>

 /WEB-INF/jspPages/USTMHeader.jsp

 </include-prelude>

 <include-coda>

 /WEB-INF/jspPages/USTMFooter.jsp

 </include-coda>

 </jsp-property-group>

 </jsp-config>

Configuring Character Encoding

 <locale-encoding-mapping-list>

 <locale-encoding-mapping>

 <locale>ja</locale>

 <encoding>Shift_JIS</encoding>

 </locale-encoding-mapping>

 </locale-encoding-mapping-list>

Designating Application

Event Listeners
 <listener>

 <listener-class>

 package.ListenerClass

 </listener-class>

 </listener>

Developing for the Clustered

Environment
 enterprise-level applications are deployed in

a clustered environment.
 A clustered environment usually consists of

many machines connected through the local
area network (LAN) and sometimes even
through the wide area network (WAN).

 a hardware load balancer is placed in front
of all of these machines.

 this keeps each machine in the cluster
equally loaded, so no single machine’s
resources are exhausted.

Continue…
 This behavior is achieved by sharing the

HttpSession among the machines in the
cluster.

 Even though each machine in the cluster
has its own Java Virtual Machine (JVM), the
HttpSession object gets copied and shared
among the cluster.

 Because clustered Web applications run in
multiple JVMs, you may not rely on the
usual mechanisms of sharing data used in
regular Web applications

Continue…
 (1) Avoid instance variables and static data (such

as singletons) for shared data.
 Each JVM in a cluster will have its own copy of

the instance variables and static data. Changes to
this data in one JVM will leave all other JVMs
unaffected.

(2) Don't store data in the ServletContext
 Each JVM in a cluster has its own copy of the

ServletContext.
 Therefore, if you store an attribute in the

ServletContext, the ServletContext object of
other servers (JVMs) will not contain this
attribute.

Continue…

 (3) Objects stored in HttpSession must
implement Serializable.

 The servlet specification requires compliant
Web containers to support migration of
objects stored in the HttpSession that
implement the Serializable interface.

 If the objects stored in the HttpSession do
not implement the Serializable interface,
the container may fail to migrate the
session.

Continue…
 (4)Only minimal information should be stored

in HttpSession.

 For a clustered environment to function as a
single Web application, the data stored in the
HttpSession must be kept in sync with the
other servers in the cluster.

 This is achieved by sending the data back and
forth between the servers.

 Naturally, this consumes a lot of resources.

 Therefore, storing a lot of data in the
HttpSession could considerably degrade the
performance of your Web application even
when the request load is not very high.

Continue…
 In the deployment descriptor, web.xml, the

distributable element indicates that the

Web application is programmed in such a

way that servers that support clustering

can safely distribute the Web application

across multiple servers.

 The distributable element contains no

subelements or data—it is simply a flag (as

 follows):

 <distributable />

THANK YOU

